Primal-dual active set methods for Allen-Cahn variational inequalities with non-local constraints
نویسندگان
چکیده
We propose and analyze a primal-dual active set method for local and nonlocal Allen-Cahn variational inequalities. An existence result for the non-local variational inequality is shown in a formulation involving Lagrange multipliers for local and non-local constraints. Superlinear local convergence is shown by interpreting the approach as a semi-smooth Newton method. Properties of the method are discussed and several numerical simulations demonstrate its efficiency.
منابع مشابه
Primal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کاملNon-local Allen-Cahn systems: Analysis and a primal dual active set method
We show existence and uniqueness of a solution for the non-local vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and non-local constraints. Furthermore, we propose and analyze a primal-dual active set method for local and non-local vector-valued Allen-Cahn variational inequalities. Convergence of the primal-dual active set algorithm is s...
متن کاملAllan-Cahn and Cahn-Hilliard variational inequalities solved with Optimization Techniques
Parabolic variational inequalities of Allen-Cahn and CahnHilliard type are solved using methods involving constrained optimization. Time discrete variants are formulated with the help of Lagrange multipliers for local and non-local equality and inequality constraints. Fully discrete problems resulting from finite element discretizations in space are solved with the help of a primal-dual active ...
متن کاملPreconditioning for Allen-Cahn variational inequalities with non-local constraints
The solution of Allen-Cahn variational inequalities with mass constraints is of interest in many applications. This problem can be solved both in its scalar and vector-valued form as a PDE-constrained optimization problem by means of a primal-dual active set method. At the heart of this method lies the solution of linear systems in saddle point form. In this paper we propose the use of Krylov-s...
متن کاملPrimal and dual active-set methods for convex quadratic programming
Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate a sequence of iterates that are feasible with respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009